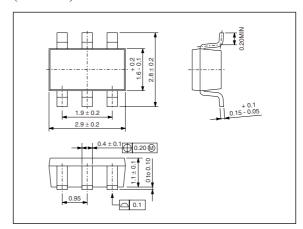


Miniature-package Crystal Oscillator Module ICs

OVERVIEW


The SM5023 series are 3rd overtone crystal oscillator module ICs. They feature built-in oscillator capacitors with excellent frequency response. As cutoff frequency can be configured by using an external feedback resistor $R_{\rm fo}$, a favorable 3rd overtone oscillation can be realized with a few external components. The oscillator circuit characteristics are optimized for a 3rd overtone oscillation by round blank. They also feature a built-in output buffer with high output drive capability and are available in miniature 6-pin package, making them ideal as DIP-type crystal oscillators.

FEATURES

- Operating supply voltage range
- 3V operation: 2.7 to 3.6V
- 5V operation: 4.5 to 5.5V
- 4MHz to 70MHz operating frequency range (Oscillation frequency is settable by external components)
- -40 to 85°C operating temperature range
- Oscillator capacitors C_G, C_D built-in (BN×H version only)
- lacktriangle Cutoff frequency setting using external feedback resistor R_{fo}
- Output drive capability
 - $8mA (V_{DD} = 2.7V)$
 - $16\text{mA} (V_{DD} = 4.5V)$
- Output three-state function built-in
 - High impedance output in standby mode
- CMOS output duty level (1/2VDD)
- Molybdenum-gate CMOS process
- Package: SOT23-6 (SM5023×××H)

PACKAGE DIMENSIONS

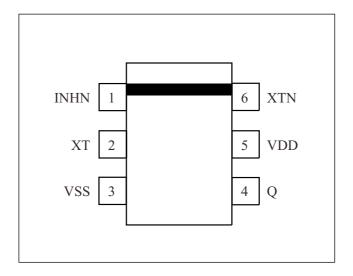
(Unit: mm)

APPLICATIONS

■ DIP-type crystal oscillator modules

SERIES CONFIGURATION

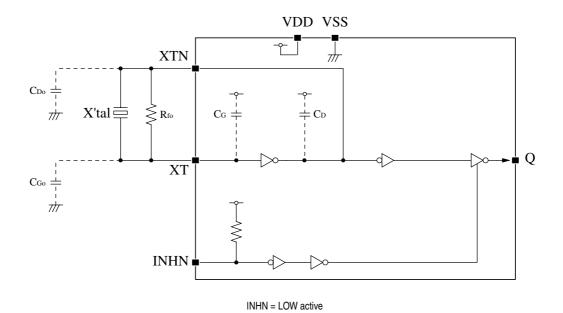
	Operating	Recommended	(Oscillator circ	uit constant	S		Standby mode		
Version Supply voltage range [V]	operating frequency	gm ratio	Built-in capacitance		Rf [kΩ]	Output duty level	Oscillator	Output		
	range [V]	range ¹ [MHz]	giii ratio	C _G [pF]	C _D [pF]	ni [KS2]		Oscillator	state	
SM5023BNDH	2.7 to 3.6	22 to 70 3	22 to 70 3	8	15	_	CMOS	Operation	Hi-Z	
SINIDUZODINUH	4.5 to 5.5									
SM5023BNEH	2.7 to 3.6	50 to 70	4	8	12	-	CMOS	Operation	Hi-Z	
CMEOSSCNIDH	2.7 to 3.6	44-70		3				CMOS	Operation	Hi-Z
SM5023CNDH —	4.5 to 5.5	4 to 70	3	_	_	_	CIVIOS	Operation	п⊩∠	


The 3rd overtone frequency range using an external resistor to set the cutoff frequency. The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

ORDERING INFORMATION

Device	Package
SM5023×××H	SOT23-6

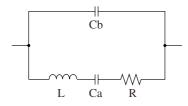
PINOUT


(Top view)

PIN DESCRIPTION

Name	I/O	Description				
INHN	I	Output state control input. F Pull-up resistor built-in.	utput state control input. High impedance when LOW. ull-up resistor built-in.			
XT	I	Amplifier input	Crystal connection pins.			
XTN	0	Amplifier output	Crystal is connected between XT and XTN.			
VSS	-	Ground				
Q	0	Output. f _O (XT pin input freq	Output. f _O (XT pin input frequency)			
VDD	-	Supply voltage				

BLOCK DIAGRAM


FUNCTIONAL DESCRIPTION

Standby Function

When INHN goes LOW, the oscillator output on Q becomes high impedance.

INHN	Q	Oscillator
HIGH (or open)	f _O	Normal operation
LOW	High impedance	Normal operation

Current consumption and Output waveform with NPC's standard crystal

f [MHz]	R [Ω]	L [mH]	Ca [fF]	Cb [pF]
30	18.62	16.24	1.733	5.337
40	20.53	11.34	1.396	3.989
50	22.17	7.40	1.370	4.105
60	22.20	5.05	1.388	4.226
70	25.42	4.18	1.254	5.170

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS} = 0V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	-0.5 to +7.0	V
Input voltage range	V _{IN}	-0.5 to V _{DD} + 0.5	V
Output voltage range	V _{OUT}	-0.5 to V _{DD} + 0.5	V
Operating temperature range	T _{opr}	-40 to +85	°C
Storage temperature range	T _{STG}	-55 to +125	°C
Output current	l _{out}	20	mA
Power dissipation	P _D	250	mW

Recommended Operating Conditions

3V operation: SM5023BNDH, BNEH, CNDH

 $V_{SS} = 0V$, $f \le 70MHz$, $C_L \le 15pF$ unless otherwise noted.

Parameter	Symbol	Rating			Unit
Operating supply voltage	V _{DD}	2.7	-	3.6	V
Input voltage	V _{IN}	V _{SS}	-	V _{DD}	V
Operating temperature	T _{OPR}	-20	_	+80	°C

5V operation: SM5023BNDH, CNDH

$$\begin{split} &V_{SS}=0V,\,f\leq 50MHz,\,C_L\leq 50pF \text{ unless otherwise noted.}\\ &V_{SS}=0V,\,f\leq 70MHz,\,C_L\leq 15pF \text{ unless otherwise noted.} \end{split}$$

Parameter	Symbol	Rating			Unit
Operating supply voltage	V _{DD}	4.5	-	5.5	V
Input voltage	V _{IN}	V _{SS}	-	V _{DD}	V
Operating temperature	T _{OPR}	-40	-	+85	°C

Electrical Characteristics

3V operation: SM5023BNDH, BNEH, CNDH

 $V_{\rm DD}$ = 2.7 to 3.6V, $V_{\rm SS}$ = 0V, Ta = -20 to +80°C unless otherwise noted.

Parameter	Cumbal	Condition	Rating			Unit	
Parameter	Symbol	Condition			typ	max	Ullit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, V _{DD} = 2.7V, I _{OH} = 8	mA	2.1	2.4	-	V
LOW-level output voltage	V _{OL}	Q: Measurement cct 2, V _{DD} = 2.7V, I _{OL} = 8r	mA	-	0.3	0.5	V
HIGH-level input voltage	V _{IH}	INHN		2.0	-	-	V
LOW-level input voltage	V _{IL}	INHN		-	-	0.5	V
0	I _Z	Q: Measurement cct 2, INHN = LOW, V _{DD} = 3.3V	$V_{OH} = V_{DD}$	-	-	10	μΑ
Output leakage current			V _{OL} = V _{SS}	-	-	10	μΑ
Current consumption	I _{DD}	Measurement cct 3, load cct 1, INHN = open, C _L = 15pF, f = 70MHz		-	15	30	mA
INHN pull-up resistance	R _{UP}	Measurement cct 4		25	100	250	kΩ
	C _G	Design value. A monitor pattern on a wafer is tested.	SM5023BNDH SM5023BNEH	7.44	8	8.56	pF
Built-in capacitance	_	Design value.	SM5023BNDH	13.95	15	16.05	pF
	C _D A monitor pattern on a wafer is tested.	SM5023BNEH	11.16	12	12.84	pF	

5V operation: SM5023BNDH, CNDH

 $V_{\rm DD}$ = 4.5 to 5.5V, $V_{\rm SS}$ = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Cumbal	Condition	Rating			Unit	
Parameter	Symbol	Condition			typ	max	Unit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, V _{DD} = 4.5V, I _{OH} =	16mA	3.9	4.2	-	٧
LOW-level output voltage	V _{OL}	Q: Measurement cct 2, V _{DD} = 4.5V, I _{OL} =	I6mA	-	0.3	0.5	٧
HIGH-level input voltage	V _{IH}	INHN		2.0	-	-	٧
LOW-level input voltage	V _{IL}	INHN	INHN		-	0.8	٧
	IZ	Q: Measurement cct 2, INHN = LOW, V _{DD} = 5.5V	$V_{OH} = V_{DD}$	-	-	10	μΑ
Output leakage current			V _{OL} = V _{SS}	-	-	10	μΑ
Comment agreementing	I _{DD1}	Measurement cct 3, load cct 1, INHN = open	C _L = 15pF f = 70MHz	-	20	40	mA
Current consumption	I _{DD2}		C _L = 50pF f = 50MHz	-	25	50	mA
INHN pull-up resistance	R _{UP}	Measurement cct 4	•	25	100	250	kΩ
Built-in capacitance	C _G	Design value. A monitor pattern on a wafer is tested.	SM5023BNDH	7.44	8	8.56	pF
	C _D	Design value. A monitor pattern on a wafer is tested.	SM5023BNDH	13.95	15	16.05	pF

Switching Characteristics

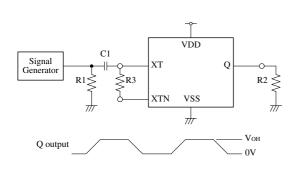
3V operation: SM5023BNDH, BNEH, CNDH

 $V_{DD} = 2.7$ to 3.6V, $V_{SS} = 0$ V, Ta = -20 to +80°C unless otherwise noted.

Parameter	Symbol	nbol Condition		Rating		
raiailletei	Symbol			typ	max	Unit
Output rise time	t _{r1}	Measurement cct 5, load cct 1, $0.1V_{DD}$ to $0.9V_{DD}$, C_L = 15pF	-	2.5	5	ns
Output fall time	t _{f1}	Measurement cct 5, load cct 1, $0.9V_{DD}$ to $0.1V_{DD}$, C_{L} = 15pF	-	2.5	5	ns
Output duty cycle ¹	Duty1	Measurement cct 5, load cct 1, V_{DD} = 3.0V, Ta = 25°C, C_L = 15pF, f \leq 70MHz	45	-	55	%
Output disable delay time	t _{PLZ}	Measurement cct 5, load cct 1, V _{DD} = 3.0V, Ta = 25°C,	-	-	100	ns
Output enable delay time	t _{PZL}	C _L = 15pF	-	-	100	ns

^{1.} The duty cycle characteristic is checked the sample chips of each production lot.

5V operation: SM5023BNDH, CNDH

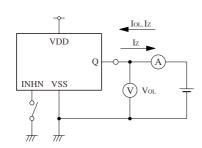

 $V_{\rm DD}$ = 4.5 to 5.5V, $V_{\rm SS}$ = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Cumbal	Condition		Rating			I I mit
Parameter	Symbol	Symbol Condition			typ	max	Unit
Output rise time	t _{r1}	Measurement cct 5, load cct 1,	C _L = 15pF	-	1.5	3	
Output rise time	t _{r2}	0.1V _{DD} to 0.9V _{DD}	C _L = 50pF	-	3	6	ns
Outside fall for a	t _{f1}	Measurement cct 5, load cct 1,	C _L = 15pF	-	1.5	3	ns
Output fall time	t _{f2}	0.9V _{DD} to 0.1V _{DD}	C _L = 50pF	-	3	6	
Output duty avala	Duty1	Measurement cct 5, load cct 1,	C _L = 15pF f ≤ 70MHz	45	-	55	%
Output duty cycle ¹	Duty2	V _{DD} = 5.0V, Ta = 25°C	C _L = 50pF f ≤ 50MHz	45	-	55	%
Output disable delay time	t _{PLZ}	Measurement cct 5, load cct 1, V _{DD} = 5.0V, Ta = 25°C, C _L = 15pF		-	-	100	ns
Output enable delay time	t _{PZL}			-	-	100	ns

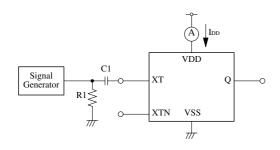
 $^{1. \ \ \}text{The duty cycle characteristic is checked the sample chips of each production lot}.$

MEASUREMENT CIRCUITS

Measurement cct 1

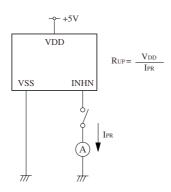

2.0Vp-p, 10MHz sine wave input signal (3V operation) 3.5Vp-p, 10MHz sine wave input signal (5V operation)

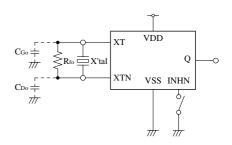
C1: $0.001\mu F$ R1: 50Ω


R2: 263Ω (3V operation) 244Ω (5V operation)

R3: 100kΩ

Measurement cct 2

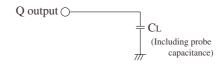

Measurement cct 3


2.0Vp-p, 70MHz sine wave input signal (3V operation) 3.5Vp-p, 70MHz sine wave input signal (5V operation) C1: $0.001\mu F$

C1: 0.001μF R1: 50Ω

Measurement cct 4

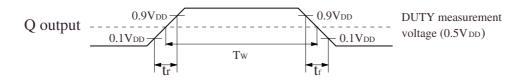
Measurement cct 5

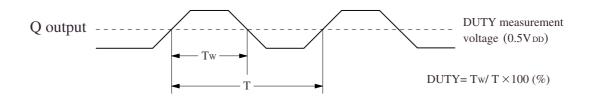

Crystal oscillation

 R_{fo} : 1.5kΩ (3V, 70MHz operation) 3.9kΩ (5V, 70MHz operation)

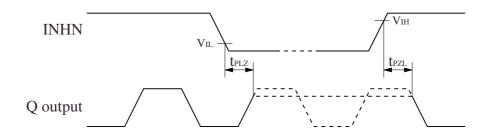
5.6kΩ (5V, 50MHz operation)

SM5023CNDH: $C_{Go} = 8pF$, $C_{Do} = 15pF$


Load cct 1


 $\begin{aligned} &C_{L} = 15 \text{pF: } t_{r1},\, t_{f1},\, \text{Duty1, } I_{DD1} \\ &C_{L} = 50 \text{pF: } t_{r2},\, t_{f2},\, \text{Duty2, } I_{DD2} \end{aligned}$

Switching Time Measurement Waveform


Output duty level, t_r, t_f

Output duty cycle

Output Enable/Disable Delay

 $INHN \ input \ waveform \ tr = tf \le 10ns$

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from NIPPON PRECISION CIRCUITS INC. (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.

4-3, Fukuzumi 2-chome, Koto-ku, Tokyo 135-8430, Japan Telephone: +81-3-3642-6661 Facsimile: +81-3-3642-6698 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0302BE 2004.07